

2026

정보통신(산업)기사 시험대비

개념과 기출을 한번에!

정보전송일반

· 2026년 출제기준 개정내용 완벽 반영!

필기

CBT 기출복원문제 수록

I. 개념잡기 기본이론

II. 실전문제풀이

III. 기출문제 (25년 ~ 19년)

편저 박종규 정보통신기술사

SUDO 수도스터디

수도전기통신학원 · 수도스터디

수험 가이드

정보통신(산업)기사 _ 정보전송일반

GUIDE

1. 시행처 : 한국방송통신전파진흥원(<https://www.cq.or.kr/main.do>)

2. 시험과목

	정보통신기사	정보통신산업기사
필기	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 정보시스템운용 5. 컴퓨터일반 및 정보설비기준	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 컴퓨터일반 및 정보설비기준
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사
필기	<ul style="list-style-type: none"> 검정방법 : 객관식 4지선다형, 문제수 : 100문제(과목당 20문제) 시험시간 : 2시간 30분 	<ul style="list-style-type: none"> 검정방법 : 객관식 4지선다형, 문제수 : 80문제(과목당 20문제) 시험시간 : 2시간
실기	<ul style="list-style-type: none"> 검정방법 : 필답형 : 주관식 필기 15~20문제 시험기간 : 2시간 30분 	

4. 합격기준

- 필기 : 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
- 실기 : 100점을 만점으로 하여 60점 이상

CHAPTER 01 / 정보통신시스템 구축

01 기술사항 검토	10
1. 변조(Modulation)의 개념	10
2. 변조(Modulation)의 목적	11
3. 변조(Modulation)의 종류	11
• 실전 핵심 문제	30
02 회로시뮬레이션	40
1. 발진회로	40
2. 필터회로	47
3. 논리회로	48
• 실전 핵심 문제	62

CHAPTER 02 / 정보통신선로 검토

01 유선선로설비	76
1. 전송매체의 종류	76
• 실전 핵심 문제	94
02 전파의 전파 특성검토	106
1. 전파(Wave)의 전파(Propagation) 개념	106
2. 전자파 이론	108
• 실전 핵심 문제	114

CHAPTER 03 / 통신선로 시설 및 측정

01 통신선로 시설 분류	124
1. 건축물 구내통신 선로시설	124
2. 구내통신선로시설의 설치 기술기준	127
3. 구내통신선로케이블의 국제규격	129
02 광케이블 측정	130
1. 접속손실 측정	130
2. 총 손실 측정	132
• 실전 핵심 문제	136

CHAPTER 04 / 네트워크 품질시험

01 시험방법	144
1. 신호의 형태	144
2. 시스템의 개념	145
3. 에너지신호와 전력신호	146
4. 신호크기 RMS 및 전송단위 dB	147
• 실전 핵심 문제	152
02 단위시험	154
1. 전송속도	154
2. 채널용량	158

5G

5G

5G

5G

들어가는 순서

정보통신(산업)기사 _ 정보전송일반

3. 전송 장애	160
4. 에러검출 및 정정(에러제어)	161
• 실전 핵심 문제	176
03 종합시험	190
1. 단방향 및 양방향 통신, 직 · 병렬 전송	190
2. 동기방식 및 비동기방식 전송	192
• 실전 핵심 문제	194

CHAPTER 05 / 정보통신시스템 장비발주 ("기사"만 해당)

01 장비규격검토	202
1. 교환방식 과 듀플렉스(FDD와 TDD)	202
2. 다중화기술	204
3. 다중접속기술	208
4. 전송프레임 기본구조	218
• 실전 핵심 문제	224
02 전파환경측정	234
1. 대역확산기술	234
2. 다중경로채널 및 페이딩	239
3. 다중입출력 안테나기술	243
• 실전 핵심 문제	246

부 록 01 정보통신기사 기출문제

• 2019년도 정보통신기사 정보전송일반	254
• 2020년도 정보통신기사 정보전송일반	263
• 2021년도 정보통신기사 정보전송일반	272
• 2022년도 정보통신기사 정보전송일반	281
• 2023년도 정보통신기사 정보전송일반	290
• 2024년도 정보통신기사 정보전송일반	299
• 2025년도 정보통신기사 정보전송일반	308

부 록 02 정보통신산업기사 기출문제

• 2019년도 정보통신산업기사 정보전송일반	318
• 2020년도 정보통신산업기사 정보전송일반	327
• 2021년도 정보통신산업기사 정보전송일반	336
• 2022년도 정보통신산업기사 정보전송일반	344
• 2023년도 정보통신산업기사 정보전송일반	353
• 2024년도 정보통신산업기사 정보전송일반	362
• 2025년도 정보통신산업기사 정보전송일반	370

CHAPTER

01

정보통신 시스템 구축

01 기술사항검토

02 회로시뮬레이션

01 기술사항 검토

01 변조(Modulation)의 개념

신호 정보를 전송 매체의 채널 특성에 맞게끔 신호(정보)의 세기나 변위, 주파수, 위상 등을 적절한 파형 형태로 변환하는 것. (주파수축에서 Frequency Shift)

연속 아날로그 변조	연속 디지털 변조	펄스 아날로그 변조	펄스 디지털 변조
AM	ASK	PAM	PNM
FM ^{[필][실]}	FSK	PWM	PCM ^{[필][실]}
PM	PSK	PPM	

(1) AM(진폭변조)

- 가. DSB(양측파대 변조)
- 나. SSB(단측파대 변조)
- 다. VSB(잔류측파대 변조)

(2) PSK(위상편이변조)

- 가. DPSK(차동 위상 편이변조)
- 나. MSK(Minimum Shift Keying)

(3) PCM(펄스코드변조)

- 가. DM(Delta Modulation)
- 나. DPCM(차분 펄스 부호 변조)

(4) 복합변조

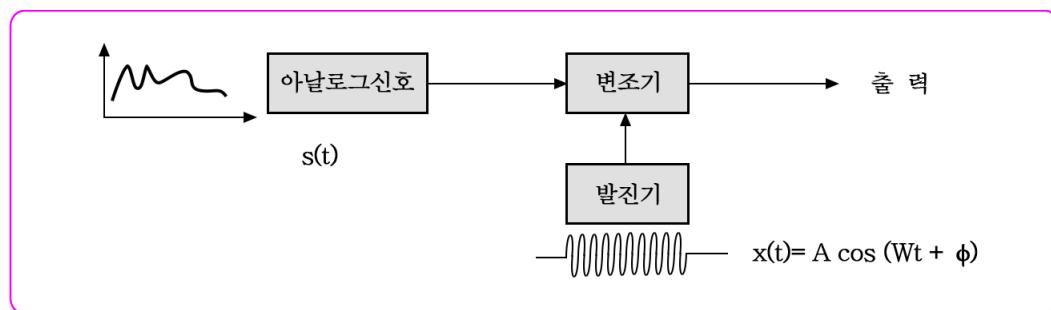
- 가. QAM = ASK + PSK(진폭 직교 변조)

02 변조(Modulation)의 목적

(1) 원거리전송

주파수가 높은 반송파(발진주파수)에 실어(변조) 전송해 원거리 까지 신호전달

(2) 효율적인 안테나 방사(복사) 및 장비의 소형화


반송파의 주파수가 높아져 파장($\lambda = \frac{c}{f} [m]$, $c = 3 \times 10^8 [m/s]$)이 짧아지므로, 안테나 및 장비의 소형화 가능

(3) 하나의 통신로에 여러 신호의 동시 전송

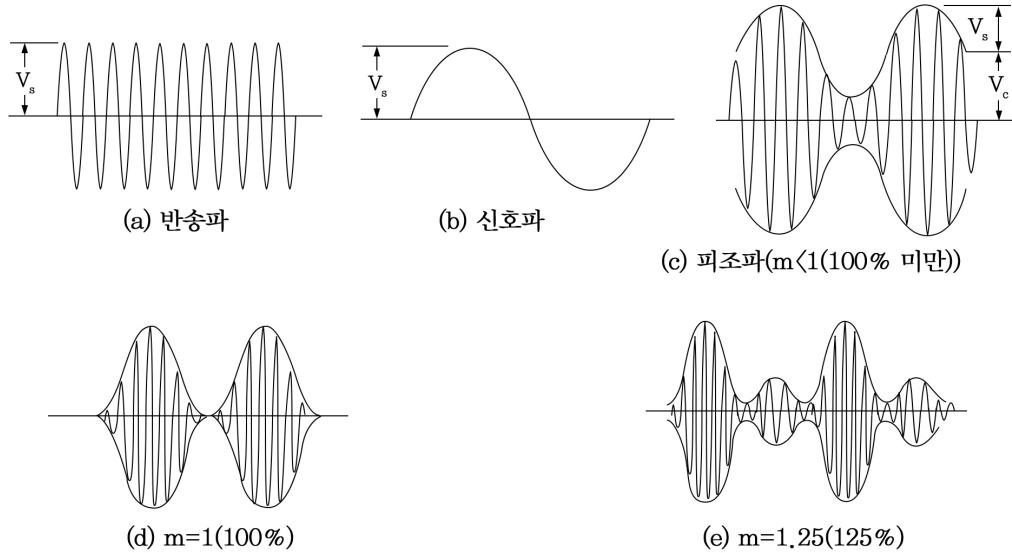
반송파의 주파수가 높아져 사용대역폭이 넓어지므로, 대역폭을 분할하여 여러 개의 신호를 동시에 전송(FDM) 가능

(4) 잡음과 간섭으로부터 강인

반송파의 주파수가 높아져 외부잡음에 강인해지므로, 신호대잡음비($\frac{S}{N}$)가 향상됨

03 변조(Modulation)의 종류

(1) 진폭변조 (AM : Amplitude Modulation)


가. 신호파의 크기에 따라 반송파의 진폭을 변화시키는 방식

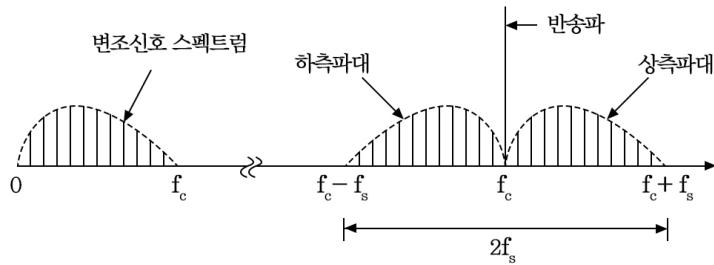
나. 변조파(e_{AM})의 전개

$$e_{AM} = (V_c + V_s \cos \omega_s t) \cos \omega_c t$$

$$= V_c \left(1 + \frac{V_s}{V_c} \cos \omega_s t\right) \cos \omega_c t$$

여기서, $\frac{V_s}{V_c}$ 를 m (변조도) 라 하고, 그 백분율을 변조율이라 함

다. 변조파(e_{AM})의 파형 및 변조도에 따른 특성 [필]


- 변조도($m < 1$)인 경우 전력소비가 큼
- 변조도($m=1$)인 경우 전력낭비가 없고 이상적임
- 변조도($m > 1$)인 경우 과변조로 신호가 일그러짐(신호회복이 어려움)

반송파 형태	변조도(m) [필][실] 계산
	$m = \frac{V_s}{V_c} = \frac{A - B}{A + B}$

라. 진폭변조의 측파대(Side Frequency Wave Band)포함 변조파(e_{AM})의 전개

$$\begin{aligned}
 e_{AM} &= V_c (1 + m \cos \omega_s t) \cos \omega_c t = V_c \cos \omega_c t + m V_c \cos \omega_s t \cos \omega_c t \\
 &= V_c \cos \omega_c t + \frac{m V_c}{2} \cos (\omega_c + \omega_s) t + \frac{m V_c}{2} \cos (\omega_c - \omega_s) t
 \end{aligned}$$

제1항(반송파) 제2항(상측파대) 제3항(하측파대)

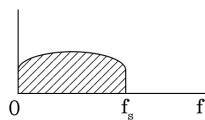
- 반송파의 전력을 P_c
- 진폭변조 된 AM파의 상측파대 전력을 P_u
- 진폭변조 된 AM파의 하측파대 전력을 P_l
- 전력 $P = VI = \frac{V^2}{R} [W]$ 을 적용하여 각각을 전개

$$P_c = \frac{\left(\frac{V_c}{\sqrt{2}}\right)^2}{R} = \frac{V_c^2}{2R} [W]$$

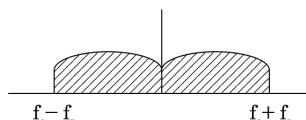
$$P_u = \left(\frac{\frac{mV_c}{2}}{\sqrt{2}}\right)^2 \times \frac{1}{R} = \frac{m^2 V_c^2}{8R} = \frac{m^2}{4} \times \frac{V_c^2}{2R} = \frac{m^2}{4} P_c [W]$$

$$P_l = \left(\frac{\frac{mV_c}{2}}{\sqrt{2}}\right)^2 \times \frac{1}{R} = \frac{m^2 V_c^2}{8R} = \frac{m^2}{4} \times \frac{V_c^2}{2R} = \frac{m^2}{4} P_c [W]$$

- $P_{AM} = P_c + P_u + P_l$ 이므로,

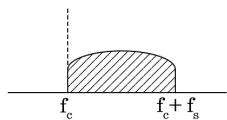

$$P_{AM} = P_c \left(1 + \frac{m^2}{4} + \frac{m^2}{4}\right) = P_c \left(1 + \frac{m^2}{2}\right) [W]$$

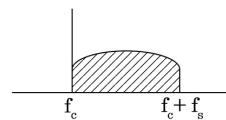
- 변조도 100[%] ($m=1$) 일 때,

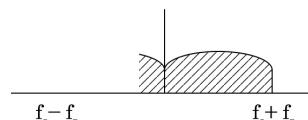

• P_{AM} (파변조파전력)은 P_c (반송파의 전력)의 1.5배^[註]

• 반송파(P_c), 상측파(P_u), 하측파(P_l)의 전력비는 1:1/4:1/4^[註]

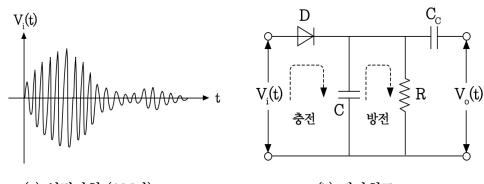
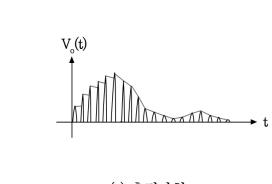
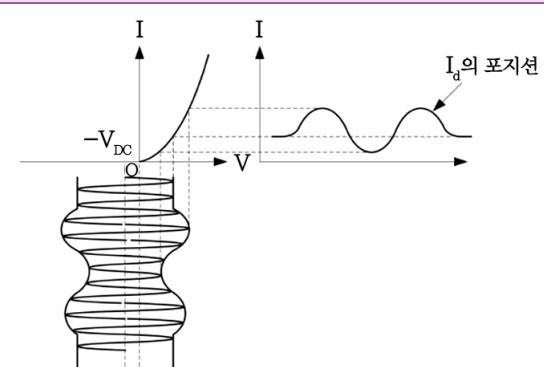
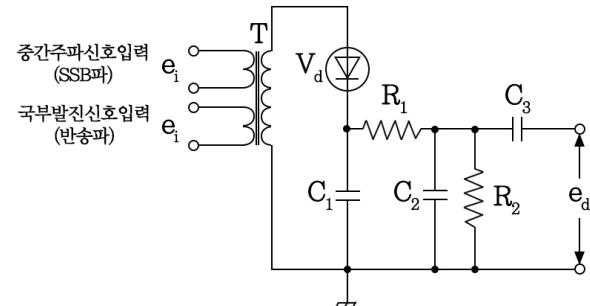
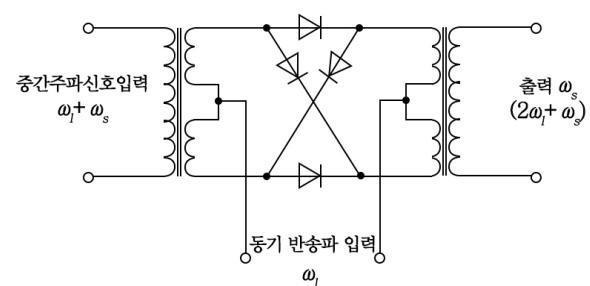
마. AM변조방식의 측파대(Side Frequency Wave Band)에 따른 스펙트럼 형태


(a) 신호파


(b) A₃ DSB파 (양측파대)


(c) J₃E SSB파 (역암 반송파)

(d) R₃E SSB파 (저감 반송파)






(e) H₃E SSB파 (전 반송파)

(f) VSB파 (잔류 측파대)

바. AM 검파(복조)기

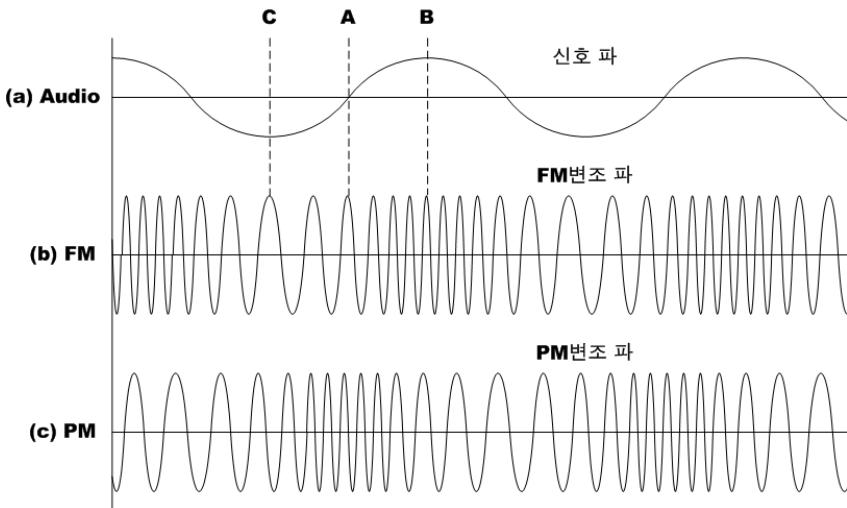
다이오드검파 (직선검파, 포락선검파)			
입력파: AM파			
검파기: 다이오드 포락선검파			
핵심기능: 총 · 방전	(a) 입력파형 (AM파)	(b) 검파회로	(c) 출력파형
자승검파			
입력파: 낮은 AM파			
검파기: 다이오드 2차 고조파			
핵심기능: 왜곡 발생 감도 우수			
다이오드 검파기			
입력파: SSB파			
검파기: 다이오드 포락선 검파			
핵심기능: 왜곡 발생 감도 우수			
링 검파기			
입력파: SSB파			
검파기: 다이오드 포락선 검파			
핵심기능: LPF 필터 무반송파수신가능			

(2) 주파수변조 (FM : Frequency Modulation)

가. 신호파의 변화(주파수 또는 위상)에 따라 반송파를 변화시키는 방식

나. 변조파(e_{FM})의 전개

$$e_s(t) = V_s \cos \omega_s t \quad (\omega_s = 2\pi f_s, f_s : \text{신호 주파수})$$


$$e_c(t) = V_c \cos \omega t \quad (\omega_c = 2\pi f_c, f_c : \text{반송 주파수})$$

$$\begin{aligned} e_{FM}(t) &= V_c \cos (\omega_c t + k \int_0^t V_s(\tau) d\tau) = V_c \cos (\omega_c t + k V_s \int_0^t \cos \omega_s \tau d\tau) \\ &= V_c \cos (\omega_c t + \frac{\Delta \omega}{\omega_s} \sin \omega_s t) = V_c \cos (\omega_c t + m_f \sin \omega_s t) \end{aligned}$$

여기서, $m_f = \frac{\Delta \omega}{\omega_s} = \frac{\Delta f}{f_s}$ 는 변조지수^[필]

Δf 는 최대 주파수 편이, 대역폭 $B = 2(\Delta f + f_s)$ ^[필]

다. 변조파(e_{FM})의 파형^[필]

- 진폭변조에 비해 잡음 및 간섭에 강인
- 진폭변조에 비해 신호대잡음비 개선
- 단, 전송채널의 주파수변동에 매우 취약하고, 넓은 주파수 대역이 요구됨

라. FM송신기 구조^[필]

- FM 삼각잡음 개선을 위한 프리앰파시스회로 사용
- 입력 신호를 제어하여, 대역폭 조정이 가능한 IDC(순시편이회로) 사용
- 높은 주파수로 천이 할 수 있는 주파수 체배기 사용