

2026

정보통신(산업)기사 시험대비

개념과 기출을 한번에!

정보통신기기

· 2026년 출제기준 개정내용 완벽 반영!

필기

CBT 기출복원문제 수록

I. 개념잡기 기본이론

II. 실전문제풀이

III. 기출문제 (25년 ~ 19년)

편저 박종규 정보통신기술사

SUDO 수도스터디

수도전기통신학원 · 수도스터디

수험 가이드

1. 시행처 : 한국방송통신전파진흥원(<https://www.cq.or.kr/main.do>)

2. 시험과목

	정보통신기사	정보통신산업기사
필기	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 정보시스템운용 5. 컴퓨터일반 및 정보설비기준	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 컴퓨터일반 및 정보설비기준
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사
필기	<ul style="list-style-type: none"> • 검정방법 : 객관식 4지선다형, • 문제수 : 100문제(과목당 20문제) • 시험시간 : 2시간 30분 	<ul style="list-style-type: none"> • 검정방법 : 객관식 4지선다형, • 문제수 : 80문제(과목당 20문제) • 시험시간 : 2시간
실기	<ul style="list-style-type: none"> • 검정방법 : 필답형 : 주관식 필기 15~20문제 • 시험기간 : 2시간 30분 	

4. 합격기준

- 필기 : 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
- 실기 : 100점을 만점으로 하여 60점 이상

CHAPTER 01 / 단말기기

01 단말기기 기능과 구조	8
1. 정보단말기의 특징과 기능	8
2. 정보단말기의 기본 구성 요소	11
• 실전 핵심 문제	18
02 통신장비 설치	22
1. 통신시스템 구성 요소	22
• 실전 핵심 문제	30
03 전송설비 적용	38
1. 다중화기	38
2. 집중화기(Concentrator)	43
3. 멀티미디어	44
4. 광전송설비	46
• 실전 핵심 문제	50

CHAPTER 02 / 회선개통

01 서비스 개통	60
1. 전화기 기능과 동작	60
2. 교환기의 기능과 동작	65
3. 음향단말기기(스피커와 마이크)	68
• 실전 핵심 문제	70

02	무선설비 적용	78
1.	이동통신 단말	78
2.	무선통신 단말(IEEE802.11, 802.15, 802.16)	92
•	실전 핵심 문제	102
03	신규[이전]인입선 설치	110
1.	사업자용 단말	110
2.	디지털 정보기기	113
•	실전 핵심 문제	116

CHAPTER 03 영상정보처리기기 공사

01	영상정보처리기기 설치	124
1.	CCTV 시스템 특성	124
2.	영상회의시스템	134
3.	방송단말	138
4.	기타단말	145
•	실전 핵심 문제	148

CHAPTER 04 홈네트워크 설비공사

01	홈네트워크 설치	164
1.	홈네트워크 설비	164
2.	홈네트워크건물 인증	169
•	실전 핵심 문제	170

02 구축공사	176
1. 스마트 미디어기기	176
• 실전 핵심 문제	182
03 서비스시스템	184
1. 융복합 단말기기	184
• 실전 핵심 문제	190

CHAPTER 05 / 교환기기

01 신호방식	196
1. 신호방식	196
02 교환방식	198
1. 교환방식	198
• 실전 핵심 문제	200

부 롤 01 / 정보통신기사 기출문제

• 2019년도 정보통신기사 정보통신기기	204
• 2020년도 정보통신기사 정보통신기기	213
• 2021년도 정보통신기사 정보통신기기	222
• 2022년도 정보통신기사 정보통신기기	231
• 2023년도 정보통신기사 정보통신기기	240
• 2024년도 정보통신기사 정보통신기기	249
• 2025년도 정보통신기사 정보통신기기	258

부 롤 02 정보통신산업기사 기출문제

- 2019년도 정보통신산업기사 정보통신기기 268
- 2020년도 정보통신산업기사 정보통신기기 277
- 2021년도 정보통신산업기사 정보통신기기 286
- 2022년도 정보통신산업기사 정보통신기기 295
- 2023년도 정보통신산업기사 정보통신기기 304
- 2024년도 정보통신산업기사 정보통신기기 313
- 2025년도 정보통신산업기사 정보통신기기 322

수도전기통신학원 · 수도스터디

CHAPTER

01

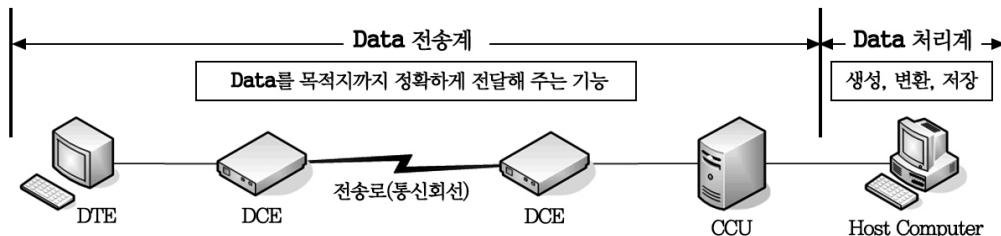
단말기 개발검증

01 단말기기 기능과 구조

02 통신장비 설치

03 전송설비 적용

01 단말기기 기능과 구조


01 정보단말기의 특징과 기능

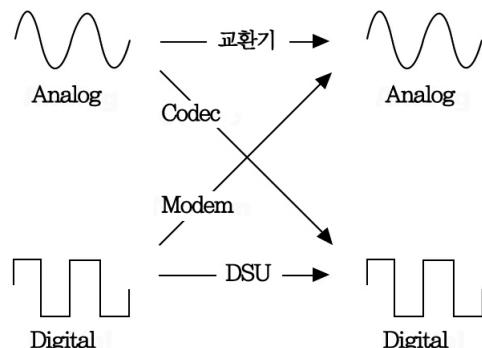
디지털 데이터의 송수신 과정에서 최종적으로 데이터를 전송하는 기능을 수행하는 입력·출력 장치를 정보단말기라 함

입·출력 기능	전송제어 기능	기억 기능
자료 입력	송·수신 제어	임시저장
처리 후 출력	입·출력 제어	Buffer
	에러 제어	

(1) 정보통신 시스템 구성 (필)(실)

가. 시스템 구성도

- 정보통신 시스템은 DTE와 DCE, CCU, Host(단말, 컴퓨터)로 구성됨
- 전송로(통신회선, 전송매체, 전송채널)는 다양하게 구성할 수 있으며, 대표적으로 유선전송로와 무선전송로로 구분할 수 있음
- 유선전송로는 동축케이블, 평행2선식, 광케이블이 있음
- 무선전송로는 300Hz ~ 3000GHz를 사용해 전파채널을 구성 할 수 있음
- 정보통신시스템은 정보를 처리(수집, 가공, 전송)하는 시스템을 말함


① DTE(Data Terminal Equipment : 단말 장치)

- 데이터 단말 장치로 사용자 정보를 신호로 변환하거나, 수신한 신호를 정보로 재 변환하는 종단 장비
- 데이터 회선 종단 장비(DCE)와 통신함
- 입력 · 출력 기능과 송신 · 수신 기능 제공

② DCE(Data Communication Equipment : 회선 종단 장치)

- 데이터 통신 장치로 통신망과 인터페이스 하는 장치
- 송신측에서 보내려는 정보신호를 전송로에 보내기 적합한 신호로 바꾸어 주는 기능 제공
- 신호 변환 장치 또는 회선 종단 장치라 함
- 신호 변환에 따른 DCE 장비 구분 [필][실]

정보(Data)	신호(Signal)	DCE 장비
아날로그(Analog)	아날로그(Analog)	교환기
아날로그(Analog)	디지털(Digital)	Codec
디지털(Digital)	아날로그(Analog)	MODEM
디지털(Digital)	디지털(Digital)	DSU(Digital Service Unit)

③ CCU(Communication Control Unit : 통신 제어 장치)

- 데이터 전송회선과 컴퓨터 사이에 위치하며 컴퓨터가 전송회선에 데이터 전송 시 전송에 필요한 제어를 담당하는 장치
- 핵심기능은 데이터 전송제어 (에러제어, 흐름제어, 동기제어)기능 수행
- 문자 조립/분해 및 직병렬 데이터 변환 기능
- 통신회선의 감시 및 접속 제어 기능
- 통신회선과 중앙처리장치를 결합하는 기능 (다중전송제어)

(2) 정보통신 시스템 분류 (필)

통신시스템의 기본 계통은 '중앙처리장치 → 통신제어장치 → 데이터전송회선 → 전송제어장치 → 단말장치'로 구성됨

가. 데이터 처리 방식에 따른 분류

① 중앙처리장치(Central Processing Unit)

'연산, 제어, 주 기억 장치'로 구성되며 전달된 정보를 특정 목적에 따라서 정확하게 처리하는 기능을 수행하는 장치

② 주변장치

하드 디스크, 보조기억장치(플로피 디스크, CD, SSD)를 이용하여 중앙처리장치에서 처리되어 온 정보를 저장하거나, 출력하는 기능을 수행하는 장치

나. 데이터 통신 시스템에 따른 분류

① 온라인 시스템(On Line System)

- 송신단말장치와 수신 단말장치 사이에 사람이 개입하지 않고, 전송매체를 거쳐 통신하는 방식으로 실시간 처리(Real-Time Processing)시스템
- 전송매체를 통해 데이터가 빠르고 신속하게 전달되므로 통신제어 장치 필요
- 응용분야 : 은행(Banking), 좌석 예약(Booking), 전자 교환

② 오프라인 시스템(Off Line System)

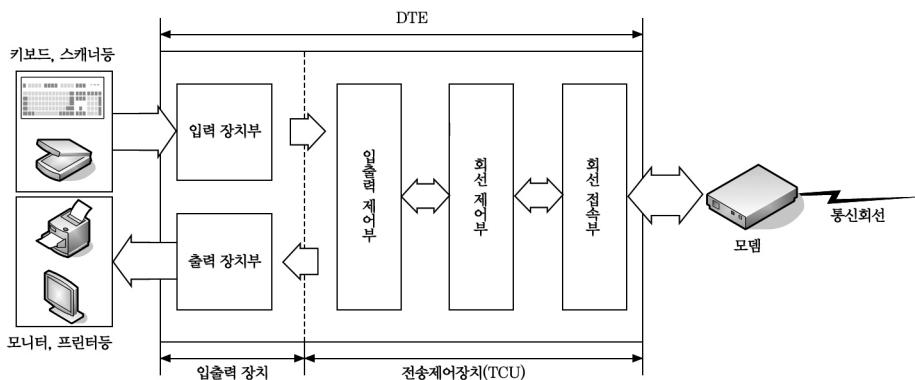
- 송신단말장치와 수신 단말장치 사이에 사람이나 기계장치의 개입이 필요한 방식으로 실시간 데이터 처리가 불가능한 형태의 시스템
- 통신회선을 직접 사용하지 않고 기록매체(저장장치)를 이용하므로 통신제어 장치가 필요 없음
- 응용분야 : 데이터를 한 곳에 모아서 일정한 시점에 처리

다. 통신 처리 방식에 따른 분류

① 실시간 처리(Real-Time Processing)

컴퓨터에 의한 처리 결과를 요구 시 즉시 처리할 수 있는 시스템. 즉, 데이터가 발생하는 즉시 정보를 처리하는 형태의 시스템

② 일괄처리(Remote Batch Processing)


- 단말장치에서 발생한 정보를 일정시간, 일정량을 모았다가 한꺼번에 정보를 처리하는 시스템
- 일정기간 수집 후 처리하는 일괄처리(Batch Processing)방법과 데이터가 단말에서 발생할 때마다 입력해 한건 씩 처리하는 트랜잭션처리(Transaction Processing)방법이 있음

02 정보단말기의 기본 구성 요소

DTE (단말장치)				
입 · 출력 장치부	입 · 출력 제어부	회선 접속부 + TCU	중앙처리장치	
키보드 및 모니터 등	오류제어 및 송수신 제어 등	물리적 접속 (커넥터) 등	전송제어장치	CPU, Memory (메모리) 등

- 단말장치(DTE)는 전송제어장치와 입 · 출력 장치로 구분 할 수 있음 [필]
- 전송제어장치(TCU)는 회선 접속부, 회선 제어부, 입 · 출력제어부로 나뉨 [필]

(1) 입 · 출력 장치부

가. 입 · 출력 장비부

① 입력 장치부 [필]

- ② 키보드 (적외선 키보드) 및 마우스(디지타이저-정밀한 마우스)
- ③ 광펜 (Light Pen)
- ④ 음성 및 문자, 화상 입력장치
 - 광학 문자 판독기 (OCR 글씨를 인식하는 장치)
 - 카드 판독기 (천공카드의 구멍을 인식하는 장치)

② 출력 장치부 [필]

③ 인쇄장치

- 라인 프린터 : 한 행을 한 번에 인쇄 (고속인쇄, 최근 프린터 대부분)
- 시리얼 프린터 : 좌에서 우로 한 글자씩 인쇄(도트, 감열, 열전사)
- 충격식 프린터 : 글자를 헤드에 묻어있는 잉크로 때려 인쇄(가격 저렴, 타이프라이터, 도트매트릭스)

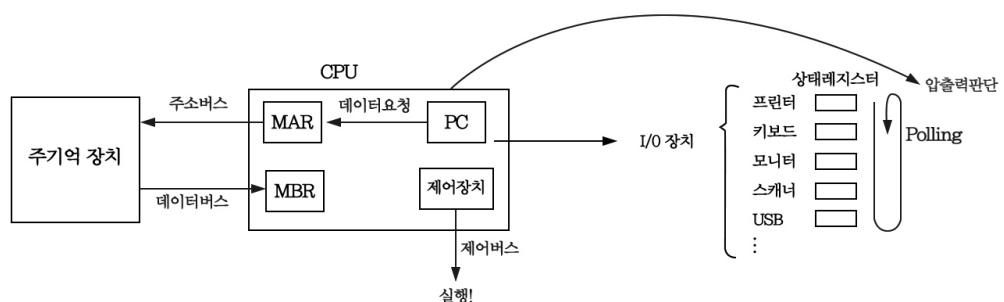
- 레이저 프린터 : 토너 가루를 미세한 레이저 빔을 이용해 종이에 뿐림
- 베를젯 프린터 : 미세한 잉크 방울을 만들어 종이에 잉크 방울을 끈힘
- 잉크젯 프린터 : 잉크를 높은 압력으로 종이에 뿐림

⑤ 표시장치^[필]

- LCD(Liquid Crystal Display)
 - 인가되는 전압에 따라 액정(LCD)의 투과도 변화를 이용하는 장치
 - 자기발광성이 없어 후광(Back Light)이 필요함
 - 소비전력이 적고, 휴대용으로 널리 쓰이는 평판 디스플레이의 일종
- PDP(Plasma Display Panel)
 - 작은 네온전구의 집합과 같은 기능을 하는 평면형 표시장치
 - 2매의 얇은 유리기판사이의 틈에 네온(He) 등의 가스를 봉입하고 유리의 내면에 수평 방향과 수직방향으로 배열된 투명전극으로 구성
- CRT(Cathode Ray Tube)
 - 아날로그 TV의 브라운관
 - Cathode Ray Tube의 약자로 전기신호를 전자빔의 작용에 의해 영상이나 도형, 문자 등의 광학적인 상(그림자)으로 변환하여 표시
 - 특수진공관으로 음극선관(CRT)이라고 함
- OLED(Organic Light Emitting Diodes : 유기발광다이오드)
 - 2개의 전극(Anode 와 Cathode)사이에 삽입된 유기물 층에 가해지는 전기장에 의해 발광하게 되는 자체 발광형 디스플레이 소자
 - 반응속도가 LCD에 비해 1000배 빠름(동영상에 잔상이 없음)

⑥ 입력과 출력 공용 장치^[필]

- 입력과 출력 쌍방의 변환 기능을 모두 가진 대화형 단말
- TSS(Time Sharing System)이 필수로 요구됨



	LCD	OLED
특징	<ul style="list-style-type: none"> 고휘도(밝기) 표현능력 우수 번인(Burn-In) 현상 적음 기술 성숙도 높음 가격 낮음 	<ul style="list-style-type: none"> 높은 명암비 구현 가능 전력소모가 낮음 빠른 응답속도와 넓은 시야각 선명한 색감 표현 가능 구조적으로 두께가 얕음 플렉서블(Flexible) 디스플레이 구현 가능
구조		

(2) 입·출력 제어부

가. CPU에 의한 방식

- 초기 컴퓨터에서 사용하던 방식
- 입출력 장치가 컴퓨터에 연결되고 고유의 레지스터를 할당받아 동작
- CPU의 리소스를 과도하게 사용하여 자원이 낭비됨

* 개발자를 향하여 블로그 참조

나. DMA(Direct Memory Access) 방식

- CPU의 개입 없이 DMA에 의해 제어되는 방식
- CPU의 제어권이 없어 통제가 안되는 문제 발생 → Channel 방식으로 개선