

최신판

정보통신(산업)기사 시험대비

쉽고 명쾌한 강의로 **합격을 한번에!**

풀답형 (이론+문제)

박종규 정보통신기술사 편저

설기

- I. 2026년 출제기준 개정내용 완벽반영!
- II. 최신 출제 기준에 맞는 이론
- III. 실전 핵심문제 250제 수록(최근 7개년 기출문제)

수험 가이드

정보통신(산업)기사 실기

GUIDE

1. **시행처** : 한국방송통신전파진흥원(<https://www.cq.or.kr/main.do>)

2. 시험과목

	정보통신기사	정보통신산업기사
필기	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 정보시스템운용 5. 컴퓨터일반 및 정보설비기준	1. 정보전송일반 2. 정보통신기기 3. 정보통신네트워크 4. 컴퓨터일반 및 정보설비기준
실기	정보통신실무	정보통신실무

3. 검정방법

	정보통신기사	정보통신산업기사
필기	<ul style="list-style-type: none"> • 검정방법 : 객관식 4지선다형, • 문제수 : 100문제(과목당 20문제) • 시험시간 : 2시간 30분 	<ul style="list-style-type: none"> • 검정방법 : 객관식 4지선다형, • 문제수 : 80문제(과목당 20문제) • 시험시간 : 2시간
실기	<ul style="list-style-type: none"> • 검정방법 : 필답형 : 주관식 필기 15~20문제 • 시험기간 : 2시간 30분 	

4. 합격기준

- 필기 : 100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
- 실기 : 100점을 만점으로 하여 60점 이상

CHAPTER 01 교환시스템 기본설계

01 교환설비 기본	10
1. 변조(Modulation)의 목적	10
2. 변조(Modulation)의 종류	11
3. 발진회로	17
4. 신호의 형태	19
5. 전송속도	23
6. 채널용량	26
7. 에러검출 및 정정(에러제어)	28
02 망 관리	34
1. 교환방식과 듀플렉스(FDD와 TDD)	34
2. 다중화기술	36
3. 다중접속기술	38
4. 전송계위에 따른 전송프레임 기본구조	47
5. 대역확산기술	52
6. 다중경로채널 및 페이딩	55
7. 다중입출력 안테나기술	57
8. 정류회로, 평활회로, 전원안정화 회로	58
Chapter 01 실전 핵심 문제	62

CHAPTER 02 네트워크 구축공사

01 네트워크 설치	92
1. 네트워크 분류 및 특징	92
2. 통신 프로토콜 기능 및 특징	94
02 망관리시스템 운용	104
1. 흐름제어, 에러제어, 혼잡제어	104
2. 흐름제어	104
3. 오류제어 및 혼잡제어	105
4. MAC (Media Access Control)	106
5. 인터넷(IP) 주소체계	107
6. 서브넷팅 (CIDR, VLSM)	108
7. IP계층 응용 프로토콜	113
8. IP주소 자원관리	116
9. 라우팅 개념	119
10. 라우팅 프로토콜	120
03 보안환경구성	122
1. 관리적보안	122
2. ISMS(Information Security Management System)	122
3. PIA(Privacy Impact Assessment)	125
4. 망분리	126
5. 물리적보안	127
6. 개인정보보호법	128
7. 접근통제 (식별, 인증, 인가), Access Control	129
8. 해킹 및 보안	130
9. 기술적보안	135

10. 네트워크 스캐닝	139
11. 네트워크 보안기술	141
Chapter 02 실전 핵심 문제	148

CHAPTER 03**구내통신구축 공사관리**

01 설계보고서 작성	176
1. 정보통신시스템 설계계획	176
2. 정보통신시스템의 운영계획	178
3. 정보통신공사 예정가격 작성기준	180
4. 정보통신공사 표준품셈(원가계산방식) 및 표준시장단가 방식	183
5. 홈네트워크 설비	185
6. 스마트정보통신건물 인증(스마트정보통신건물인증 업무처리 지침_25.12.01)	187
7. 지능형홈네트워크 분야	190
8. 접지시스템	191
02 설계단계의 감리업무수행	193
1. 정보통신공사업법 제2장 공사의 설계 · 감리[시행 2022. 7. 12.]	193
2. 정보통신공사의 범위[정보통신공사업법 시행령 제2조(공사의 범위)]	194
3. 설계대상공사 및 범위[정보통신공사업법 시행령(시행 2023. 9. 12.)]	195
4. 감리대상공사 및 감리원 배치제도[정보통신공사업법 시행령(시행 2023. 9. 12.)]	195
5. 정보통신공사 설계 기준 및 산출물[정보통신공사업법 시행령(시행 2023. 9. 12.)]	198
6. 정보통신 감리업무[정보통신공사업법 시행령(시행 2023. 9. 12.)]	199
7. 정보통신공사 감리업무 수행기준(2019)	199
Chapter 03 실전 핵심 문제	202

CHAPTER 04 구내통신 공사품질 관리

01 단위시험	230
1. 정보통신시스템	230
2. 정보단말기의 기본 구성 요소	232
3. 통신시스템 구성 요소	233
4. 광통신 서비스의 형태	236
5. 다중화기	238
6. 전화기 기능과 동작	242
7. 교환기의 기능과 동작	245
8. 이동통신 단말	248
9. 무선통신 단말(IEEE802.11, 802.15, 802.16)	257
10. CCTV 시스템 특성	262
02 유지보수	264
1. 전송매체의 종류	264
2. 전파(Wave)의 전파(Propagation) 개념	274
3. 응용 프로토콜	277
4. 백업 및 장애검출 프로토콜	280
5. 정보통신설비의 가용성(Availability)	283
6. 정보통신설비 유지보수 범위 및 관리	285
Chapter 04 실전 핵심 문제	288

CHAPTER 05 실전 계산 문제

• 정보통신[산업]기사 실전 계산 문제	316
-----------------------	-----

수도전기통신학원 · 수도스터디

CHAPTER 01

교환시스템 기본설계

01 교환설비 기본

02 망 관리

01

교환설비 기본

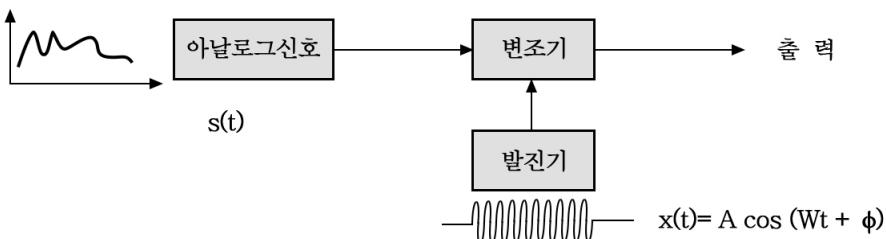
[필]은 필기, [실]은 실기 기출에서 3회 이상 출제

01 변조(Modulation)의 목적 [필][실]

(1) 원거리전송

주파수가 높은 반송파(발진주파수)에 실어(변조) 전송해 원거리 까지 신호전달

(2) 효율적인 안테나 방사(복사) 및 장비의 소형화


반송파의 주파수가 높아져 파장($\lambda = \frac{c}{f} [m]$, $c = 3 \times 10^8 [m/s]$)이 짧아지므로, 안테나 및 장비의 소형화 가능

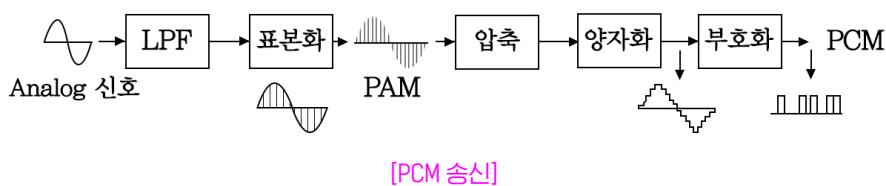
(3) 하나의 통신로에 여러 신호의 동시 전송

반송파의 주파수가 높아져 사용대역폭이 넓어지므로, 대역폭을 분할하여 여러 개의 신호를 동시에 전송(FDM) 가능

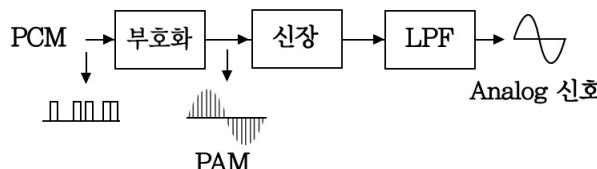
(4) 잡음과 간섭으로부터 강인

반송파의 주파수가 높아져 외부잡음에 강인해지므로, 신호대잡음비($\frac{s}{n}$)가 향상됨

02 변조(Modulation)의 종류


(1) 진폭변조(AM : Amplitude Modulation)

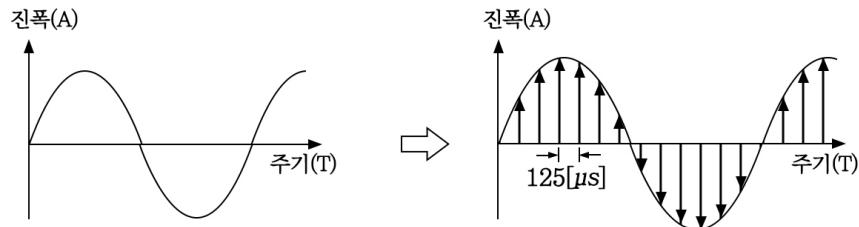
반송파 형태	변조도(m) ^{[설][실]} 계산
	$m = \frac{V_s}{V_c} = \frac{A - B}{A + B}$


(2) 디지털 펄스변조^{[설][실]}

가. 디지털 펄스변조는 아날로그 파형을 샘플링하고 양자화시킨 신호로 펄스를 변조하거나 부호화 하는 방식(PCM, PNM, DM)

나. 디지털 펄스변조의 전개

[PCM 송신]



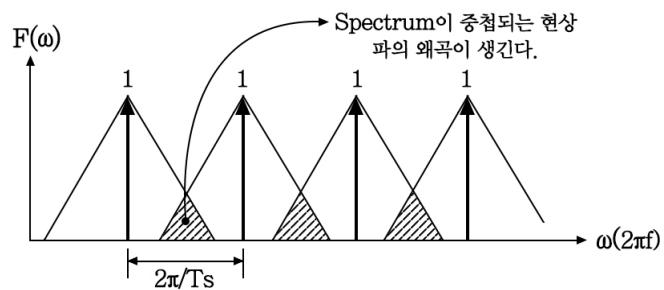
[PCM 수신]

- 송신기에 입력되는 아날로그신호를 LPF(Low Pass Filter)로 잡음억제
- 표본화 과정을 거쳐 PAM신호로 변환
- PAM신호는 양자화 과정을 거쳐 계단형태의 근사파형을 생성

다. 표본화(Sampling) 과정

- 표본화는 연속적 아날로그 신호파형을 일정주기(나이퀴스트 샘플링주기)로 분해하여 진폭 대푯값(PAM)으로 변환하는 과정
- 대푯값의 주기는 신호가 복조 가능한 최소한의 주기를 선정함
- 최소한의 주기는 나이퀴스트 샘플링주기(표본화 이론)^{[필][실]}에서 정의함
 - 표본화 이론(나이퀴스트 샘플링주기)

$$T_s \leq \frac{1}{2f_m} \text{ (최고 주파수}(f_m))$$

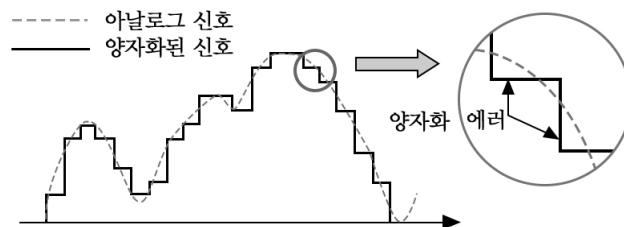

- 표본화 이론(나이퀴스트 샘플링주파수)

$$f_s \geq 2f_m \text{ (최고 주파수}(f_m))$$

- 다만, 샘플링 과정에서 샘플링주기(주파수)에 따라 표본화 오차^{[필][실]} 발생

앨리어싱(Aliasing) 발생

$$f_s < 2f_m$$



- $\frac{2\pi}{T_s}$ 간격이 좁으면 Impulse간 스펙트럼이 겹치는 앤리어싱현상 발생
 - 앨리어싱현상이 발생되면 수신기에서 복조시 신호파를 필터링 하는데 있어 왜곡(Distortion)이 발생됨(수신불가)

라. 양자화 종류(방법)^{[필][실]}

선형(균등) 양자화	비선형(비균등) 양자화	적응형 양자화
양자화 스텝 균일	양자화 스텝 비균일	양자화 스텝 적응
선형 양자화기 + 암신기	작은입력신호 작은스텝 큰입력신호 큰스텝	적응형 양자화기

- 다만, 양자화 과정에서 양자화방법에 따라 양자화 오차^{[필][실]} 발생

$$\cdot \text{양자화신호대잡음비 } S/N_q [dB] = 6n + 1.8, \quad (n: \text{양자화 시 사용되는 bit 수})$$

$$\cdot \text{양자화신호대잡음비(SQNR)} = 10 \log \frac{3}{2} \cdot (2^n)^2 = 6n + 1.8 [dB]$$

$$S = \left(\frac{\frac{V}{2}}{\sqrt{2}} \right)^2 = \frac{V^2}{8} [w], \text{ 정현파 실효값 [w]}$$

$$N = \left(\frac{\frac{\Delta}{2}}{\sqrt{3}} \right)^2 = \frac{\Delta^2}{12} [w], \text{ 삼각파 실효값 [w]}$$

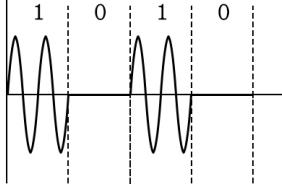
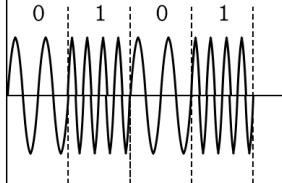
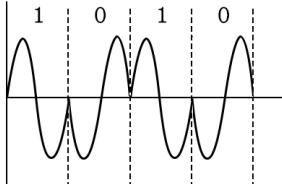
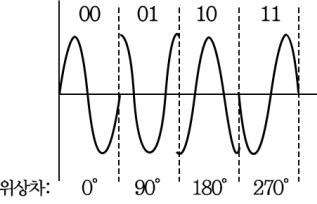
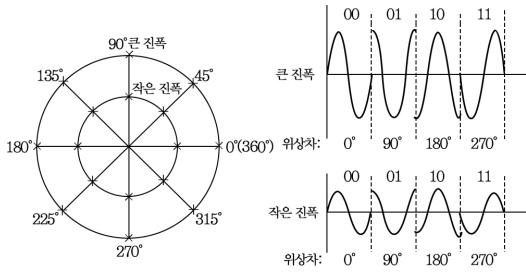
$$\text{여기서, } \frac{\Delta}{2} = 2n \text{ 과 같음 } (n: \text{양자화 시 사용되는 Bit수})$$

• 양자화 오차 개선방법 [필][실]

양자화 스텝수 증가	압신기 사용	Dither 사용	오버샘플링
$S/N_q [dB] = 6n + 1.8$	작은신호 크게 큰신호 작게	백색잡음 삽입	$(6n + 1.8 + 10\log d)$ d: 오버샘플링 계수
1bit 증가시 6[dB] 개선	양자화 오차 최소화	잡음으로 인해 양자화오차 개선	샘플링주파수 2배 이상 수행
6[dB]법칙			

마. PCM의 특징 [필][실]

• PCM의 장점






- 디지털신호를 전송하므로 전송채널 상에서 잡음에 강인함(S/N비 우수)
- 잡음(누화) 및 혼선에 강인함
- 전송채널에 손실이 발생해도 어느 정도 신호 전송이 가능함
- 채널중간 ‘재생증계기’를 사용하여 전송채널에 잡음이 누적되지 않음

• PCM의 단점

- PCM고유의 잡음(양자화잡음, 앤리어싱현상)이 발생
- 동기확보가 안되면 송·수신이 어려움
- 채널당 소요되는 대역폭이 증가됨
- A/D 및 D/A과정이 필요해 장비가 복잡

(3) 브로드밴드전송(디지털 변조)

가. 디지털 변조는 디지털 입력신호('0' 또는 '1')를 이용, 연속 아날로그 반송파를 변화 시키는 방식 (ASK, FSK, PSK, QAM 등)

디지털 변조	
ASK(Amplitude Shift Keying) (On-Off Keying)	ASK波形图展示了两个不同的振幅，对应二进制数据1和0。波形在1时振幅最大，在0时振幅为0。
FSK(Frequency Shift Keying)	FSK波形图展示了两个不同的频率，对应二进制数据0和1。波形在0时频率较低，在1时频率较高。
PSK(Phase Shift Keying) (2진-PSK, BPSK)	PSK波形图展示了两个不同的相位，对应二进制数据1和0。波形在1时相位偏移90度，在0时相位偏移0度。
디지털 변조 응용(M-Array)	
4-PSK(Phase Shift Keying)	4-PSK波形图展示了四个不同的相位，对应二进制数据00, 01, 10, 11。波形在00时相位偏移0度，在01时偏移90度，在10时偏移180度，在11时偏移270度。
QAM ^{[필][실]} (Quadrature Amplitude Modulation) (ASK + PSK)	QAM波形图展示了复数平面上的四象限，标注了相位0°, 90°, 180°, 270°。左图显示了相位偏移，右图显示了对应的波形。

다. 스펙트럼 효율과 에러 확률, 데이터전송률

- 데이터전송률(정보 전송률, 전송속도)^{[필][실]}
 - 데이터(비트, 심볼 등)가 전송채널로 전송되는 속도를 총칭
 - 이상적인 전송채널과 잡음 전송채널에 따라 전송률이 달라질 수 있음